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Elementary signals

Exponential signals
Sinusoidal signals
Hiperbolik Sinyaller

Sinyal Analizi (2 — Boyutlu)
* Sinyalin kendisi

Logaritmik fonkisyonlar ) TUrevi

Cko degiskenli fonksiyonlar * Integrali

Step function * Limit

Rectangular pulse * Fourier Analizi

Impulse function  Laplace ve Z donustmleri
Ramp function e  Yorumlanmasi

Polinomlar



The elementary functions include

Constant functions: 2, e, 1t
Powers of x, x%, x3

Roots of X, \/x
Exponential functions: e

Logarithms: log(x)

Trigonometric functions: sin(x), cos(x), tan(x)

Inverse trigonometric functions: arcsin(x), arccos(x), arctan(x)
Hyperbolic functions: sinh(x), cosh(x), tanh(x)

Inverse hyperbolic functions: arcsinh(x), arccosh(x),arc tanh(x)



Step function
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Dogru akim ya da gerilim sinyalleri
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Equation y = p produces a horizontal line at the level p
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Equation x = p produces a vertical line shifted by p from the y-axis



Rectangular pulse
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Triangular Function

@ The triangular function (also called the unit-triangular pulse function),
denoted tri, is defined as

tri(r) = =20t || <2 e Ucgen fonksiyon: Artan ve azalan rampa
B otherwise. fonksiyonlarinin bitinlesmesinden olusur.
, o  Rampa fonkisyonu, y(t)=at+b, ave b
@ A plot of this function is shown below. y : : o :
degerleri sabit degiskenledir.
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Unit impulse function

S(t) = lim é[u(t) —u(t — a)l
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Unit-Impulse Function

@ The unit-impulse function (also known as the Dirac delta function or
delta function), denoted 9, is defined by the following two properties:

o(r) =0 forr#0 and

/ 5(t)d

@ Technically, 0 is not a function in the ordinary sense. Rather, it is what is
known as a generalized function. Consequently, the o function
sometimes behaves in unusual ways.

@ Graphically, the delta function is represented as shown below.

o(1) K&(t —tg)

i ! K

0 0 1o

Ornek: t=15 saniyede
f(t)=20birim. Geriye kalan tim t
saniyelerde f(t)=0birim ise bu
fonksiyon ne olarak adlandirilir?



Sampling
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Properties of the Unit-Impulse Function

@ liquivalence property. For any continuous function x and any real
constant 7,

I(i‘)ﬁ(f — f[)) = I(f[))ﬁ(f —T(]).

@ Sifting property. For any continuous function x and any real constant 7,
f x(1)0(t —to)dt = x(tg).

@ The 0 function also has the following properties:

o(r)=0(—¢) and
S(at) = 1-8(1),

al

where a is a nonzero real constant.



Unit doublet function o'()

o' (1)
D);
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Birim Diktorgen Adim Fonksiyonu

The unit rectangle or gate signal can be represented as combination
of two shifted unit step signals as shown

rect(t) = u(t+a)-u(t-a)

ect(?)
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Darbe Fonksiyonu

Impulse Function

Define the function f, (t-a) as

-
Area =
|k fastsa+k & =
fiell = a) =
() otherwise _ ¥ W
a a+k f
In terms of unit step functions The function fi{t — a

I
[t — a) = r [w(t — a) — w(r — (a + k)]

Dirac delta function or unit impulse function

o(t — = |j Al — a).
o(t — a) +|:1—l-l|'1’r“” ()



sign function

sgn(t) = <

(1, t =0
O, t=0

L—l,t<0
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Sighum Function

@ The signum function, denoted sgn, is defined as

(1 ifr>0
segnt =0 ifr=0
—1 ifr<0.

\

@ From its definition, one can see that the signum function simply computes
the sign of a number.

@ A plot of this function is shown below.

sent




Unit ramp signal

r® =15

_ dr(®)

) = dt

t=0
t<0

r(t)

r(t) = J‘toou(z-)dr
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Ramp function

Genel anlamda rampa fonksiyonu, r(t)=at+b
biciminde yazilir. Burada, a ve b sabit
degiskenlerdir.

r(t)
Unit slope

Time t

t, t=0
r(t) =
(t) {O, t<O



Ramp function

y=ax (a>0) y=ax (a<0)
y=—1.1xVY |\

Equation y = ax+ p (linear function)



Ramp function

.v‘ y=ax+p
yF2x—1
>
| X
y } —
b

The parameter piny =ax+p




Dogrusal Modeller

Y, x'in dogrusal bir fonksiyonu ise, fonksiyonun grafiginin bir dogru oldugunu
kastediyoruz.

Boylece, bir dogrusal denklemin egim-kesme noktalarinda fonksiyon olarak
yazabiliriz.

V=TFT(X)=mxX+Db

burada m, dogrunun egimi ve b, y kesme noktasidir.

Dogrusal fonksiyonlarin karakteristik bir 6zelligi, sabit bir oranda
buyumeleridir.

Ornegin, sekilde, f (x) = 3x - 2 dogrusal fonksiyonunun bir grafigi ve érnek
degerler tablosu verilmistir.

3 degeri grafiginin egimi, y'nin x'e gore degisim orani olarak yorumlanabilir.
X degeri 0.1 arttiginda, f (x) degerinin 0.3 arttigina dikkat edin.
Yani, f (x), x'in Gc¢ kati hizh artar.

y=3x — 2
-:}/ x
_7

f(x) 3X 2
1.0 B
1.1 1.3
1.2 1.6
1.2 1.9
1.4 2.2
.S 2.3




Dogrusal Modeller

Kuru hava yukari dogru hareket ettikce genisler ve sogur. Zemin sicakligi 20 ° Cve 1 km
yukseklikteki sicaklik 10 ° C ise, dogrusal bir modelin uygun oldugunu varsayarak sicakligi T
(° C cinsinden) yiksekligin (kilometre cinsinden) bir fonksiyonu olarak ifade edin.
Fonksiyonun grafigini cizin. Egim neyi temsil ediyor? 2.5 km yukseklikte sicaklik nedir?

T, h'nin dogrusal bir fonksiyonu oldugunu varsaydigimiz icin, T = mh + b yazabiliriz.

h =0, yani 20 = m*0+b oldugunda, y kesme noktasi b = 20'dir. Ayrica, h =1 oldugunda T =
10, m=-10 olur.

Gerekli dogrusal fonksiyon T =-10h + 20'dir.

Eg§imm =-10°C/ km'dir.

Bu, yukseklige gore sicaklik degisim oranini temsil eder.

h = 2,5 km yikseklikte sicaklik: T=-10(2,5) + 20 =-5 ° C'dir.




Parabolic signal

fo(t) =+

t2

\O’

t>=0
t <0

N,
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Sinc signal

sin c(t) =

sin 7t

7zt
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Cardinal Sine Function

@ The cardinal sine function, denoted sinc, is given by

Sint
sinc(7) = —

@ By I'Hopital’s rule, sinc( = 1.

@ A plot of this function for part of the real line is shown below.
[Note that the oscillations in sinc(7) do not die out for finite 7.]
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Exponential Signals

Continuous-Time Exponential Signals
e Real Exponential Signals (C and a are real)

x{t}
x(t

1
If a>0, x(t) is a growing exponential
If <0, x(t) is a decaying exponential
Impulse responses for first-order systems



Real Exponentials

 Gergek bir Gstel, karmasik bir Gstel x (t) = Ae » (At) 6zel durumudur, burada A ve A, gercek sayilarla
sinirhidir.

 Gergek bir Ustel, asagida gosterildigi gibi A degerine bagli olarak Gg¢ farkh davranis tarzindan birini
gosterebilir.

e MA>O0ise, x (t), t arttikca Ussel olarak artar (yani, artan bir tstel).
e A<Oise, x (t), t arttikca Ussel olarak azalir (yani, azalan bir Gstel).
e EgerA=0ise, x (t) basitce A sabitine esittir.

AeM AeM At




Real Sinusoids

e A(CT) real sinusoid is a function of the form x(t) = Acos(wt +8), where A, w, and 0 are real
constants.

e Such afunction is periodic with fundamental period T = 2n/|w| and fundamental frequency |w].
 Areal sinusoid has a plot resembling that shown below.

Acos(ot+9)

Acor;El/ /
t




Complex Exponentials

 Bir (CT) karmasik Ustel, A ve A'nin karmasik sabitler oldugu x (t) = Ae * (At) formundaki bir
fonksiyondur.

 Karmasik bir Ustel, A ve A parametrelerinin degerlerine bagli olarak bir dizi farkli davranis tarzindan
birini gosterebilir.

* Ornegin, dzel durumlar olarak, karmasik tsteller gercek ustelleri ve karmasik sintizoidleri icerir.



Complex Sinusoids

« A complexsinusoid is a special case of a complex exponential x(t) = Ae”(At) , where A is complex
and A is purely imaginary (i.e., Re{A}=0).

e Thatis, a (CT) complex sinusoid is a function of the form x(t) = Ae”*(jwt), where A is complex and w is
real.

By expressing A in polar form as A= |A|e”(j0) (where O is real) and using

 Euler’s relation, we can rewrite x(t) as x(t) = | A| cos(wt +8) +j |A[|sin(wt +8)
 Re{x(t)}=]|A|cos(wt +B8) , Im{x(t)}=|A|sin(wt +06)

 Thus, Re{x} and Im{x} are the same except for a time shift.

* Also, x is periodic with fundamental period T = 2rn/|w| and fundamental frequency |w].



Real Exponential Signals and damped (Soniimlii) Sinusoidal

0.3678

A x(2)

X(t) = e

Decaying exponential
function

X(t) =e* -

Rising exponential
function
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A discrete time exponential signal 1s expressed as
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(a) Growing sinusoidal signal



Damped (Soniimlii) Sinusoidal
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Standard Curves



Standard curves
« Straight line
« Second-degree curves

* Third-degree curves

« Circle
« Ellipse
« Hyperbola

« Logarithmic curves
« EXxponential curves
« Hyperbolic curves

e Trigonometrical curves



Standard curves

Straight line

The equation of a straight line is a first-degree relationship and can always be
expressed in the form:y = mx + ¢

where m = dy/dx Is the gradient of the line and c is the y value where the line
crosses the y-axis — the vertical intercept.

J,,.r'.l.
//‘fy
0



Standard curves

Second-degree curves

The simplest second-degree curve is expressed by:y = x?

Its graph is a parabola, symmetrical about The y-axis and existing only for y > 0.

y = ax? gives a thinner parabola if a > 1 and a flatter parabola if 0 < a < 1. The general
second-degree curve is: y = ax® + bx + ¢

where a, b and ¢ determine the position, ‘width’

and orientation of the parabola.




Standard curves

Second-degree curves (change of vertex)

If the parabola: y — x>2

IS moved parallel to itself to a vertex
position (2, 3), for example, its equation
relative to the new axes Is

Y = X2

whereY =y—-3and X =x - 2.

Relative to the erigtnalaxes tis gives

{2,3}:




Standard curves

Second-degree curves v

95—
If:y = ax? + bx+c /ji\
and a < 0 then the parabola is inverted. //O — " x
For example: y — —2x2 4+ 6x+5

y'=-4x+6
y"'=-4

* Birinci turev ifadesinde, x=0 icin y'=6, y'>0 oldugundan artan durumdadir; x=2 icin
y'=-2, y' <0 oldugundan azalan durumdadir.

 |kinci tUrev degeri, y''<0 oldugundan y fonksiyonun maksimumu vardir. Maksimum
noktasi, y'=0 alinarak x=1.5 bulunur. Maksimum degeri, ymax=9.5 olur.



Standard curves

Third-degree curves

The basic third-degree curve is: y = x3
which passes through the origin.

The curve: y = x3 is the reflection in the vertical axis.

ve




Standard curves

Third-degree curves

The general third-degree curveis: y = px3 + gx* + rx + s
Which cuts the x-axis at least once.

N/ N

/a 0 b\/:: X /a 0 ble x /ai]




Standard curves

Circle

The simplest case of the circle is with centre at the origin and radius r.

The equation isthen 2 , y2 _ 2

|

Vi
/ P (x, y)
r
. -




Standard curves

Circle

Moving the centre to (h, k) gives: X2 +Y? =r?

X —h
y — K

where: X
Y

The general equation of a circle Is:

X2 +y?24+2gx+2fy+c=0

centre (—g,—f) radius /g2 + f2—c




Standard curves

Ellipse AI/ \ )
N T

Vi

. . i 2
The equation of an ellipse is: 2 + E)’ —1

If a > b then a Is called the semi-major axis and b is called the semi-minor
axis.



Standard curves

Hyperbola

The equation of an hyperbolais: = _Y__q

Wheny =0, x = &= a and when x = 0, y2 = —-b? and the curve does not cross the y-axis.

Note: The two opposite arms of the hyperbola gradually approach two straight lines (asymptotes).



Standard curves

Rectangular hyperbola

If the asymptotes are at right angles to each other, the curve is a rectangular
hyperbola.

If the curve is rotated through 45° so that the asymptotes coincide with the coordinate
axes the equation Is then:

Xy =cC that is y=E
X



Standard curves

Logarithmic curves

If y =log X, thenwhen: x =1theny = logl =0
so the curve crosses the x-axisatx =1
Also, log x does not exist for real x < 0.

v = log x




Standard curves

Logarithmic curves

The graph of y = In x also has the same shape and crosses the x-axis at x = 1.
The graphs of y = alog x and y = aln x are similar but with all ordinates
multiplied by the constant factor a.




Standard curves

Exponential curves

The curve y = eX crosses the y-axis at x = 0.

AS X—> o0 SO Yy —> oo
as X—>-o so y—>0

Sometimes called the growth curve.




Standard curves

Exponential curves

The curve y = e * crosses the y-axis aty = 1.

AS X—>oo sOo y—>0
as X —> -oo SO Yy —> oo

Sometimes called the decay curve.




Standard curves

Exponential curves y

The curve: y=a(1—e™) 0 X

passes through the origin and tends
to the asymptotey =aas x— oo .



Standard curves

Hyperbolic curves

The combination of the curves for: Y
v = cosh x

y=e" and y=e "~ ~_ | -

gives the hyperbolic cosine curve: 0

X

e’ +e”
2

Yy = cosh X =



Standard curves

Hyperbolic curves

Another combination of the curves for:

X

y=e* and y=e"

gives the hyperbolic sine curve:

X —X

e —e

= sinh X =
4 2

v = sinh x




Standard curves

Hyperbolic curves

Plotting these last two curves
together shows that:

Y = SInh X

IS always outside:

Yy = cosh X

A
¥

= cosh x

v = sinh x




Standard curves

Trigonometrical curves

The sine curve Is given as:
(a) y= Asinnx where

360"
N

Period =

, amplitude = A

(b) y= Asinwt where

Period = 2—” amplitude = A
(8D,




Asymptotes

Determination of an asymptote

An asymptote to a curve is a line to which the curve approaches as the distance from the origin
Increases. To find the asymptote to: y=f(x)

(a)Substitute y = mx + ¢ in the given equation and simplify
(b)Equate to zero the coefficients of the two highest powers of x

(c)Determine the values of m and c to find the equation of the asymptote.



Asymptotes TS
xzy—Ey—xS=D: : v
Determination of an asymptote | 58 L/+
| TN
—Ef—E K,’gf 2:2 x
- i I —5-87 \i
For example, to find the asymptote to the curve: y2y 5y x> - /T |

Substitute y = mx + c into the equation to obtain: (m —1)x® + cx®> —5mx —5c =0

Equate the coefficients of x* and x? to zero to obtain: m=1 and c=o0

Glving the asymptote: y = x




Asymptotes

Asymptotes parallel to the x- and y-axes

For the curve y = f (x), the asymptotes parallel to the y-axis can
be found by equating the coefficient of the highest power of y to zero.

Therefore for: x*y =5y —x* =0

The asymptotes are given by: x> —5=0

Thatis: *x=*V5

= 2.2 /w: —5-8-




Asymptotes

Asymptotes parallel to the x- and y-axes

For the curve y = f (x), the asymptotes parallel to the x-axis can be found
by equating the coefficient of the highest power of x to zero.

Therefore for; (@x+3)y—x+2=0

: ¥ y:,‘i_"‘i:‘_—kzﬂ
The asymptote Is given by: 2y —1=0 /;* Asymptotes
_________ i___,;_5____-':______Ef_':"_E________
—1-;5 G/f X
Thatis: y=0.5 x_1.55/




Systematic curve sketching, given the equation of the curve

Symmetry

Intersection with the axes
Change of origin

Asymptotes

Large and small values of x and y
Stationary points

Limitations



Systematic curve sketching, given the equation of the curve

Symmetry

Inspect the equation for symmetry:

(a)If only even powers of y occur, the curve is symmetrical about the x-axis
(b)If only even powers of x occur, the curve i1s symmetrical about the y-axis

= .\

0 x

(c)If only even powers of x and y occur, the curve is symmetrical about both axes



Systematic curve sketching, given the equation of the curve

Intersection with the axes

Points at which the curve crosses the x- and y-axes:

Crosses the x-axis: Puty =0 and solve for x
Crosses the y-axis: Put x = 0 and solve fory

For example, the curve vt
YVo+3y—2=x+8

y>+3y —2=Xx+8 —

] —10 -5 0 5 X
Crosses the x-axis at x = —10

Crosses the y-axisaty = 2 and —5



Systematic curve sketching, given the equation of the curve

Change of origin

Look for a possible change of origin to simplify the equation. For example,
If, for the curve a(y +3) = (x—4)?

The origin is changed by putting Y =y + 3 and X = X — 4, the equation
becomes that of a parabola symmetrical about the Y axis: 4y = x 2

C:J—LJ,,.#"'%

-/
N/

{45 _3}



Systematic curve sketching, given the equation of the curve

Asymptotes

The asymptotes parallel with the coordinate axes are found by:

(a)For the curve y = f (x), the asymptotes parallel to the x-axis can be found by equating
the coefficient of the highest power of x to zero.

(b)For the curve y = f (x), the asymptotes parallel to the y-axis can be found by equating
the coefficient of the highest power of y to zero.

(c)General asymptotes are found by substituting y = mx + ¢ in the given equation,

simplifying and equating to zero the coefficients of the two highest powers of x to find
the values of m and c.



Systematic curve sketching, given the equation of the curve

Large and small values of x and y

If x or y is small, higher powers of x or y become negligible and hence only
lower powers of x or y appearing in the equation provide an approximate
simpler form



Systematic curve sketching, given the equation of the curve

Stationary points

Stationary points exists where: % =0

If further: d?y

< O the stationary point is a maximum

dx?

d?®y - . .

e > 0 the stationary point is a minimum
X

d?y

Oz O with a change in sign through the stationary point
X

then the point is a point of inflexion



Systematic curve sketching, given the equation of the curve

Limitations

Restrictions on the possible range of values
that x or y may have. For example:

RO N\
X+ 4 % /
For x<—4 Yy~ IS negative (no real y) & % .

2
=4
For —4<x<—1 vy~? is positive \ﬁ V
For —1<x<3 y? is negative (no real y) \
2
\

For 3 < x y< IS positive




Curve fitting
Straight-line law
Graphs of the form y = ax", where a and n are constants

Graphs of the form y = ae™



Curve fitting

Straight-line law

If the assumption that the two variables x and y whose values are taken from

experiment are linearly related then their relationship will be expressed

algebraically as: y=—ax+Db

where a represents the gradient of the straight line and b represents the vertical
Intercept

From a plot of the data, a straight line is drawn through the data as the ‘line of best
fit'. The values of a and b are then read off from the graph.



Curve fitting

Graphs of the form y = ax", where a and n are constants

Taking logarithms of both sides of the equation: y = ax”

yields: logy =loga+ nlog x

If data is collected for the x and y values then these must be converted to X
and Y values where; X =logx and Y =logy

So that: Y =loga + nX : a straight line gradient n, vertical intercept loga



Curve fitting

Graphs of the form y = ae™

Taking natural logarithms of both sides of the equation: y = ae™

yields: iny = Ina + nx

If data is collected for the x and y values then the y values must be converted
to Y values where:y =Iny

So that: Y =Ina+ nx : a straight line gradient n, vertical intercept Ina



“Fonksiyonlar”
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Polynomials

* Afunction P is called a polynomial if P(x) =a x"+a x"1+..+a,x>+a;x+a,

* where nis anonnegative integer and the numbers a0, al, a2, ..., an are constants called the coefficients
of the polynomial.

A polynomial of degree 1 is of the form P(x) = mx + b. So, it is a linear function.
A polynomial of degree 2 is of the form P(x) = ax? + bx + c. It is called a quadratic function.

* |ts graph is always a parabola obtained by shifting the parabola y = x2. The parabola opens upward if a >
0 and downward if a < 0.

N
I

A\
[0\

@Q)y=x*+x+1 (b) y=—2x%>+ 3x+ 1

=Y

0 ,




Polynomials are commonly used to model various quantities that occur in the natural and social sciences.

A polynomial of degree 3 is of the form
P(x) = ax® +bx® +cx+d (a = 0)

It is called a cubic function.

VA YA

YA : ]
, \/ 21 20+
I
/ 0 | X v B

(@ y=x’—x+1 b)y=x*—3x*+x (c) y=3x—25x+ 60x

=Y
=Y




POWER FUNCTIONS

A function of the form f(x) = x3, where a is constant, is called a power function.
a = n, where n is a positive integer
— The graphs of f(x) =x" forn=1, 2, 3, 4, and 5 are shown.
— These are polynomials with only one term.
— We already know the shape of the graphs of y = x (a line through the origin with slope 1) and y = x* (a parabola).

O 1




Qubic Function

Vit

Yi

,,
'=ax> +bhx<“+cx +d

/ ™\

A general cubic function y = ax® +bx2 +cx+d

A

b

X
-

YA

V=a(X—pX—g)(X—r)

P /\\{‘l I

N

The extrema are points where the derivative of the function is zero,

which in this case results in the following quadratic equation:

(ax3+bx?+cx+d)’ = 3ax?+2bx+c = 0.



Parabolik function

y=ax (a<0)

Equation y = ax? produces a parabola, if a > 0 the parabola is opened upward
(fig.a,b), and if a < 0 the parabola is opened downward (fig.c). The larger the
absolute value of a is, the steeper is the parabola.



Parabolik fonksiyonlar

y=ax+bx+c

YA

Y

y=a(X—p)IX—q

Equation y = ax?*+bx+c also produces a parabola. At this point the derivative of the
function to zero (ax? +bx+c)’ = 2ax+b =0



CASE

. The general shape of the graph of f(x) = x" depends on whether n is even or odd.
If n is even, then f(x) = x"is an even function, and its graph is similar to the parabola y = x2.
. If n is odd, then f(x) = x"is an odd function, and its graph is similar to that of y = x3.

However, notice from the figure that, as n increases, the graph of y = x” becomes flatter near 0 and steeper when |x| = 1. If xis
small, then x2is smaller, x3 is even smaller, x*is smaller still, and so on.

~Y

~Y




CASE

a = 1/n, where n is a positive integer

f(x) =x"" =Ux . .
— The function ( ) is a root function.

For n = 2, it is the square root function f (x) = ~/ X, whose domain is 1O, o©)and whose graph
is the upper half of the parabola x = y2.

—  Forother even values Y = ~ X
of n, the graph of Yy = \/; is similar to that of




CASE

For n = 3, we have the cube root function T (X) = /X whose domainis (recall that
every real number has a cube root) and whose graph is shown.

— The graphof ¥ = /X for n odd (n > 3) is similar
to that of y, — 3w .
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CASE

— The graph of the reciprocal function f(x) = x! = 1/x is shown.
— Its graph has the equation y = 1/x, or xy = 1.
— Itis a hyperbola with the coordinate axes as its asymptotes.




CASE

. This function arises in physics and chemistry in connection with Boyle’s Law, which states that, when the temperature is
constant, the volume V of a gas is inversely proportional to the pressure P. V=C/P

. where Cis a constant. So, the graph of V as a function of P has the same general shape as the right half of the previous
figure.




RATIONAL FUNCTIONS

*  Avrational function fis a ratio of two polynomials f(x) = % where P and
Q are polynomials. The domain consists of all values of x such that

Q(x)=0.

. A simple example of a rational function is the function f(x) = 1/x, whose
domain is {x|x # 0}.

. This is the reciprocal function graphed in the figure.




RATIONAL FUNCTIONS

The function is a rational function with domain.

Ix| x = +£2}

T (X) =

22Xt — x% +1

X — 4

20+




A

1
1




slope=0




ALGEBRAIC FUNCTIONS

A function fis called an algebraic function if it can be constructed using algebraic
operations—such as addition, subtraction, multiplication, division, and taking roots—
starting with polynomials.

Any rational function is automatically an algebraic function.
Here are two more examples:




ALGEBRAIC FUNCTIONS

An example of an algebraic function occurs in the theory of relativity.
— The mass of a particle with velocity v is

where m, is the rest mass of the particle and ¢ = 3.0 x 10> km/s is the speed of light in
a vacuum.



TRIGONOMETRIC FUNCTIONS

In calculus, the convention is that radian measure is always used (except when otherwise
indicated).

— For example, when we use the function f(x) = sinx, it is understood that sin x means
the sine of the angle whose radian measure is x.

— Thus, the graphs of the sine and cosine functions are as shown
in the figure.

(a) fix)=sin x (b) g{x)=cos x



TRIGONOMETRIC FUNCTIONS

. Also, the zeros of the sine function occur at the integer multiples of . That is, sin x = 0 when x = nm, n an integer.

. An important property of the sine and cosine functions is that they are periodic functions and have a period 2mn. This means
that, for all values of x, sin(x + 21)= sin(x), cos(x + 2m)= cos(x).

. Notice that, for both the sine and cosine functions, the domain is (—0, 00) and the range is the closed interval [-1, 1]. Thus,
for all values of x, we have: -1 < sin(x) < 1, -1 < cos(x) < 1. In terms of absolute values, it is: |sin(x) < 1], |cos(x) < 1].

. The periodic nature of these functions makes them suitable for modeling repetitive phenomena such as tides, vibrating
springs, and sound waves.

. 27T
L(t) =12+ 2.8sin| — (t — 80
(t) 365( )



TRIGONOMETRIC FUNCTIONS

sin(x)

* The tangent function is related to the sine and cosine functions by the equation tan(x) = o5 ()

. , , 3
 The tangent function is undefined whenever cos x =0, that is, when x = + %, i;n, .

* Its range is (—oo, ) . Notice that the tangent m function has period: tan(x+m ) = tan(x ) for all x.

 The remaining three trigonometric functions—cosecant, secant, and cotangent—are the reciprocals of
the sine, cosine, and tangent functions.

TS—— | ¢ A
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EXPONENTIAL FUNCTIONS

The exponential functions are the functions of the form f(x)=a*, where the base a is a positive constant.
— The graphs of y = 2¥ and y = (0.5)* are shown.
— In both cases, the domain is (—o0, 00) and the range is (0, o).

— We will see that they are useful for modeling many natural phenomena—such as population growth (if a >
1) and radioactive decay (if a < 1).

— The logarithmic functions f(x) = log, x, where the base a is a positive constant, are the inverse functions
of the exponential functions.

O

(a) y=2~* (b) y = (0.5)"



sin(x)




Davranislarin Matematiksel Modellenmesi

Y=-Ix| y==x y=loga” y=a" x+y=a’



LOGARITHMIC FUNCTIONS

The figure shows the graphs of four logarithmic
functions with various bases.

— In each case, the domain is (0, ), the range i (—o0, ©0), and the function increases
slowly when x>~




TRANSCENDENTAL FUNCTIONS

Classify the following functions as one of the types of functions that we have discussed.

 f(x) =5% is an exponential function. The x is the exponent

 g(x) =x°is a power function. The x is the base. We could also consider it to be a polynomial of degree 5.
« u(t)=1-t+5t* is a polynomial of degree 4.

This is an algebraic function.

Transcendental functions are those that are not algebraic.

— The set of transcendental functions includes the trigonometric, inverse trigonometric, exponential, and logarithmic
functions.

— However, it also includes a vast number of other functions that have never been named.



Uygulama-1

y =ath

. clear all; close all
. M=41; s=(M-1)/20;
. for i=1:M
. t(i)=-s+(i-1)*0.1;
. end
. for i=1:M €>
. y1(i)=2*t(i)"2;
. y2(i)=t(i)*2;
. y3(i)=-t(i)"2;
. yA(i)=-2*t(i)"2;
. end o

yztlz
. figure(1); plot(t,y1,'r',t,y2,'b",t,y3,'g',t,y4) = 15 05 E 05 15
. title("\fontsize{20}\bf y =at*{n}','Color','b")
. xlabel('t','FontSize', 20)
. ylabel('y(t)','FontSize', 20)
. legend('y=2t"2},'Location’,'southwest','y=t*{2}','Location’,'southwest’,'y=-

t*2}','Location’,'southwest','y=-2t*{2}','Location’,'southwest' )

. grid on
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