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Temel Sinyaller
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Elementary signals

• Exponential signals

• Sinusoidal signals

• Hiperbolik Sinyaller

• Logaritmik fonkisyonlar

• Çko değişkenli fonksiyonlar

• Step function

• Rectangular pulse

• Impulse function 

• Ramp function

• Polinomlar

Sinyal Analizi (2 – Boyutlu)

• Sinyalin kendisi

• Türevi

• İntegrali

• Limit

• Fourier Analizi

• Laplace ve Z dönüşümleri

• Yorumlanması
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The elementary functions include
Constant functions: 2, e, π
Powers of x, x2, x3

Roots of   x, 𝑥
Exponential functions: ex

Logarithms: log(x)
Trigonometric functions: sin(x), cos(x), tan(x)
Inverse trigonometric functions: arcsin(x), arccos(x), arctan(x)
Hyperbolic functions: sinh(x), cosh(x), tanh(x)
Inverse hyperbolic functions:   arcsinh(x), arccosh(x),arc tanh(x)
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Step function
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Equation y = p produces a horizontal line at the level p

Doğru akım ya da gerilim sinyalleri



Equation x = p produces a vertical line shifted by p from the y-axis
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Rectangular pulse
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Triangular Function

• Üçgen fonksiyon: Artan ve azalan rampa
fonksiyonlarının bütünleşmesinden oluşur.

• Rampa fonkisyonu, y(t)=at+b, a ve b 
değerleri sabit değişkenledir.
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Unit impulse function 
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Unit-Impulse Function

Örnek: t=15 saniyede 
f(t)=20birim. Geriye kalan tüm t 
saniyelerde f(t)=0birim ise bu 
fonksiyon ne  olarak adlandırılır?
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Properties of the Unit-Impulse Function
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Birim Diktörgen Adım Fonksiyonu



Darbe Fonksiyonu
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sign function 















0

0

0

,1

,0

,1

)sgn(





t

t

t

t



Signum Function
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Unit ramp signal 
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Ramp function
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Genel anlamda rampa fonksiyonu, r(t)=at+b
biçiminde yazılır. Burada, a ve b sabit
değişkenlerdir. 



Equation y = ax+ p (linear function)

Ramp function



The parameter p in y = ax+ p

Ramp function



• Y, x'in doğrusal bir fonksiyonu ise, fonksiyonun grafiğinin bir doğru olduğunu
kastediyoruz.

• Böylece, bir doğrusal denklemin eğim-kesme noktalarında fonksiyon olarak 
yazabiliriz.

burada m, doğrunun eğimi ve b, y kesme noktasıdır.

• Doğrusal fonksiyonların karakteristik bir özelliği, sabit bir oranda
büyümeleridir.

• Örneğin, şekilde, f (x) = 3x - 2 doğrusal fonksiyonunun bir grafiği ve örnek
değerler tablosu verilmiştir.

• 3 değeri grafiğinin eğimi, y'nin x'e göre değişim oranı olarak yorumlanabilir.

• X değeri 0.1 arttığında, f (x) değerinin 0.3 arttığına dikkat edin.

• Yani, f (x), x'in üç katı hızlı artar.

( )y f x mx b  

Doğrusal Modeller



Kuru hava yukarı doğru hareket ettikçe genişler ve soğur. Zemin sıcaklığı 20 ° C ve 1 km 
yükseklikteki sıcaklık 10 ° C ise, doğrusal bir modelin uygun olduğunu varsayarak sıcaklığı T 
(° C cinsinden) yüksekliğin (kilometre cinsinden) bir fonksiyonu olarak ifade edin. 
Fonksiyonun grafiğini çizin. Eğim neyi temsil ediyor? 2.5 km yükseklikte sıcaklık nedir?

T, h'nin doğrusal bir fonksiyonu olduğunu varsaydığımız için, T = mh + b yazabiliriz.
h = 0, yani 20 = m*0+b olduğunda, y kesme noktası b = 20'dir. Ayrıca, h = 1 olduğunda T = 
10, m=-10 olur.
Gerekli doğrusal fonksiyon T = -10h + 20'dir.
Eğim m = -10 ° C / km'dir.
Bu, yüksekliğe göre sıcaklık değişim oranını temsil eder.
h = 2,5 km yükseklikte sıcaklık: T = -10 (2,5) + 20 = -5 ° C'dir.

Doğrusal Modeller
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Parabolic signal 
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Sinc signal 
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Cardinal Sine Function



Exponential Signals 
Continuous-Time Exponential Signals

• Real Exponential Signals (C and a are real)

If a>0, x(t) is a growing exponential

If a<0, x(t) is a decaying exponential

Impulse responses for first-order systems



Real Exponentials
• Gerçek bir üstel, karmaşık bir üstel x (t) = Ae ^ (λt) özel durumudur, burada A ve λ, gerçek sayılarla

sınırlıdır.

• Gerçek bir üstel, aşağıda gösterildiği gibi λ değerine bağlı olarak üç farklı davranış tarzından birini
gösterebilir.

• λ> 0 ise, x (t), t arttıkça üssel olarak artar (yani, artan bir üstel).

• λ <0 ise, x (t), t arttıkça üssel olarak azalır (yani, azalan bir üstel).

• Eğer λ = 0 ise, x (t) basitçe A sabitine eşittir.



Real Sinusoids

• A (CT) real sinusoid is a function of the form x(t) = Acos(ωt +θ), where A, ω, and θ are real 
constants. 

• Such a function is periodic with fundamental period T = 2π/|ω|  and fundamental frequency |ω|.

• A real sinusoid has a plot resembling that shown below.



Complex Exponentials

• Bir (CT) karmaşık üstel, A ve λ'nın karmaşık sabitler olduğu x (t) = Ae ^ (λt) formundaki bir
fonksiyondur.

• Karmaşık bir üstel, A ve λ parametrelerinin değerlerine bağlı olarak bir dizi farklı davranış tarzından
birini gösterebilir.

• Örneğin, özel durumlar olarak, karmaşık üsteller gerçek üstelleri ve karmaşık sinüzoidleri içerir.



Complex Sinusoids
• A complex sinusoid is a special case of a complex exponential x(t) = Ae^(λt) , where A is complex 

and λ is purely imaginary (i.e., Re{λ} = 0).

• That is, a (CT) complex sinusoid is a function of the form x(t) = Ae^(jωt), where A is complex and ω is 
real.

• By expressing A in polar form as A = |A|e^(jθ) (where θ is real) and using

• Euler’s relation, we can rewrite x(t) as x(t) = |A|cos(ωt +θ) +j |A|sin(ωt +θ) 

• Re{x(t)}=|A|cos(ωt +θ) , Im{x(t)}=|A|sin(ωt +θ) 

• Thus, Re{x} and Im{x} are the same except for a time shift.

• Also, x is periodic with fundamental period T = 2π/|ω| and fundamental frequency |ω|.



x(t) = e-at x(t) = eαt

Real Exponential Signals and damped (Sönümlü) Sinusoidal
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Standard Curves



Standard curves

• Straight line

• Second-degree curves

• Third-degree curves

• Circle

• Ellipse

• Hyperbola

• Logarithmic curves

• Exponential curves

• Hyperbolic curves

• Trigonometrical curves



Standard curves

Straight line

The equation of a straight line is a first-degree relationship and can always be 

expressed in the form:𝑦 = 𝑚x + 𝑐
where m = dy/dx is the gradient of the line and c is the y value where the line 

crosses the y-axis – the vertical intercept.



Standard curves

Second-degree curves

The simplest second-degree curve is expressed by:𝑦 = x2

Its graph is a parabola, symmetrical about The y-axis and existing only for y ≥ 0.

y = ax2 gives a thinner parabola if a > 1 and a flatter parabola if 0 < a < 1. The general 

second-degree curve is: 𝑦 = 𝑎x2 + bx + 𝑐
where a, b and c determine the position,‘width’
and orientation of the parabola.



Standard curves

Second-degree curves (change of vertex)

If the parabola:

is moved parallel to itself to a vertex 

position (2, 3), for example, its equation

relative to the new axes is

where Y = y – 3 and X = x – 2.

Relative to the original axes this gives

2y x

2Y X

2 4 7y x x  



Standard curves

Second-degree curves

If: 𝑦 = 𝑎x2 + bx + 𝑐
and a < 0 then the parabola is inverted.

For example: 22 6 5y x x   

𝑦′=-4x+6
𝑦′′=-4

• Birinci türev ifadesinde, x=0 için 𝑦′=6, 𝑦′>0 olduğundan artan durumdadır; x=2 için 
𝑦′=-2, 𝑦′ <0 olduğundan azalan durumdadır.

• İkinci türev değeri, 𝑦′′<0 olduğundan y fonksiyonun maksimumu vardır. Maksimum 
noktası, 𝑦′=0 alınarak x=1.5 bulunur. Maksimum değeri, ymax=9.5 olur.



Standard curves

Third-degree curves

The basic third-degree curve is: 𝑦 = x3

which passes through the origin.

The curve: 𝑦 = x3 is the reflection in the vertical axis.



Standard curves

Third-degree curves

The general third-degree curve is: 𝑦 = 𝑝x3 + 𝑞x2 + 𝑟x + 𝑠
Which cuts the x-axis at least once.



Standard curves

Circle

The simplest case of the circle is with centre at the origin and radius r.

The equation is then 2 2 2x y r 



Standard curves

Circle

Moving the centre to (h, k) gives:

where: 

The general equation of a circle is:

2 2 2X Y r 

X x h

Y y k

 

 

2 2

2 2

          2 2 0

centre  ( , )  radius  

x y gx fy c

g f g f c

    

   



Standard curves

Ellipse

The equation of an ellipse is:

If a > b then a is called the semi-major axis and b is called the semi-minor 

axis. 

2 2

2 2
1

x y

a b
 



Standard curves

Hyperbola

The equation of an hyperbola is:

When y = 0, x = ± a and when x = 0, y 2 = –b2 and the curve does not cross the y-axis.

Note: The two opposite arms of the hyperbola gradually approach two straight lines (asymptotes).

2 2

2 2
1

x y

a b
 



Standard curves

Rectangular hyperbola

If the asymptotes are at right angles to each other, the curve is a rectangular

hyperbola. 

If the curve is rotated through 45
o

so that the asymptotes coincide with the coordinate 

axes the equation is then:

  that is  
c

xy c y
x

 



Standard curves

Logarithmic curves

If y = log x, then when: x = 1 𝑡ℎ𝑒𝑛 𝑦 = 𝑙𝑜𝑔1 = 0
so the curve crosses the x-axis at x = 1 

Also, log x does not exist for real x < 0.



Standard curves

Logarithmic curves

The graph of y = ln x also has the same shape and crosses the x-axis at x = 1.

The graphs of y = alog x and y = aln x are similar but with all ordinates

multiplied by the constant factor a.



Standard curves

Exponential curves

The curve y = ex crosses the y-axis at x = 0.

Sometimes called the growth curve.

  

As x®¥  so  y®¥

as x®-¥  so  y® 0



Standard curves

Exponential curves

The curve y = e−x crosses the y-axis at y = 1.

Sometimes called the decay curve.

  

As x®¥  so  y® 0

as x®-¥  so  y®¥



Standard curves

Exponential curves

The curve:

passes through the origin and tends 

to the asymptote y = a as .

 1 xy a e 

 x®¥



Standard curves

Hyperbolic curves

The combination of the curves for:

gives the hyperbolic cosine curve:

  and  x xy e y e 

cosh
2

x xe e
y x


 



Standard curves

Hyperbolic curves

Another combination of the curves for:

gives the hyperbolic sine curve:

  and  x xy e y e 

sinh
2

x xe e
y x


 



Standard curves

Hyperbolic curves

Plotting these last two curves

together shows that:

is always outside:

sinhy x

coshy x



Standard curves

Trigonometrical curves

The sine curve is given as:

(a)  sin   where

360
      Period ,  amplitude

(b)  sin   where

2
      Period ,  amplitude

y A nx
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n

y A t
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Asymptotes

Determination of an asymptote

An asymptote to a curve is a line to which the curve approaches as the distance from the origin 

increases. To find the asymptote to: y=f(x)

(a)Substitute y = mx + c in the given equation and simplify

(b)Equate to zero the coefficients of the two highest powers of x

(c)Determine the values of m and c to find the equation of the asymptote.



For example, to find the asymptote to the curve:

Substitute y = mx + c into the equation to obtain:

Equate the coefficients of x3 and x2 to zero to obtain:

Giving the asymptote:

2 35 0x y y x  

3 2( 1) 5 5 0m x cx mx c    

1  and  0m c 

y x

Asymptotes

Determination of an asymptote



Asymptotes

Asymptotes parallel to the x- and y-axes

For the curve y = f (x), the asymptotes parallel to the y-axis can 

be found by equating the coefficient of the highest power of y to zero.

Therefore for:

The asymptotes are given by:

That is:

2 35 0x y y x  

2 5 0x  

5

2.2

x  

 



Asymptotes

Asymptotes parallel to the x- and y-axes

For the curve y = f (x), the asymptotes parallel to the x-axis can be found 

by equating the coefficient of the highest power of x to zero.

Therefore for:

The asymptote is given by:

That is:

(2 3) 2 0x y x   

2 1 0y  

0.5y 



Systematic curve sketching, given the equation of the curve

Symmetry

Intersection with the axes

Change of origin

Asymptotes

Large and small values of x and y

Stationary points

Limitations



Systematic curve sketching, given the equation of the curve

Symmetry

Inspect the equation for symmetry:

(a)If only even powers of y occur, the curve is symmetrical about the x-axis

(b)If only even powers of x occur, the curve is symmetrical about the y-axis

(c)If only even powers of x and y occur, the curve is symmetrical about both axes



Systematic curve sketching, given the equation of the curve

Intersection with the axes

Points at which the curve crosses the x- and y-axes:

Crosses the x-axis:   Put y = 0 and solve for x

Crosses the y-axis:   Put x = 0 and solve for y

For example, the curve

Crosses the x-axis at x = −10

Crosses the y-axis at y = 2 and −5

2 3 2 8y y x   



Systematic curve sketching, given the equation of the curve

Change of origin

Look for a possible change of origin to simplify the equation. For example, 

if, for the curve

The origin is changed by putting Y = y + 3 and X = x – 4, the equation 

becomes that of a parabola symmetrical about the Y axis:

24( 3) ( 4)y x  

24Y X



Systematic curve sketching, given the equation of the curve

Asymptotes

The asymptotes parallel with the coordinate axes are found by:

(a)For the curve y = f (x), the asymptotes parallel to the x-axis can be found by equating 

the coefficient of the highest power of x to zero.

(b)For the curve y = f (x), the asymptotes parallel to the y-axis can be found by equating 

the coefficient of the highest power of y to zero.

(c)General asymptotes are found by substituting y = mx + c in the given equation, 

simplifying and equating to zero the coefficients of the two highest powers of x to find 

the values of m and c.



Systematic curve sketching, given the equation of the curve

Large and small values of x and y

If x or y is small, higher powers of x or y become negligible and hence only 

lower powers of x or y appearing in the equation provide an approximate 

simpler form



Systematic curve sketching, given the equation of the curve

Stationary points

Stationary points exists where:

If further:

0
dy

dx


2

2

2

2

2

2

0  the stationary point is a maximum

0  the stationary point is a minimum

0  with a change in sign through the stationary point

               then the point is a point of inflexion

d y

dx

d y

dx

d y

dx









Systematic curve sketching, given the equation of the curve

Limitations

Restrictions on the possible range of values 

that x or y may have. For example:

2

2

2

2

2

( 1)( 3)
                 

4

For  < 4              is negative (no real )

For 4 1     is positive

For 1 3        is negative (no real )

For  3                 is positive

x x
y

x

x y y

x y

x y y

x y

 






   

  





Curve fitting

Straight-line law

Graphs of the form y = axn, where a and n are constants

Graphs of the form y = aenx



Curve fitting

Straight-line law

If the assumption that the two variables x and y whose values are taken from 

experiment are linearly related then their relationship will be expressed 

algebraically as:

where a represents the gradient of the straight line and b represents the vertical 

intercept

From a plot of the data, a straight line is drawn through the data as the ‘line of best 

fit’. The values of a and b are then read off from the graph.

y ax b 



Curve fitting

Graphs of the form y = axn, where a and n are constants

Taking logarithms of both sides of the equation:

yields:

If data is collected for the x and y values then these must be converted to X

and Y values where:

So that:

ny ax

log log logy a n x 

log   and  logX x Y y 

log  : a straight line gradient , vertical intercept logY a nX n a 



Curve fitting

Graphs of the form y = aenx

Taking natural logarithms of both sides of the equation:

yields:

If data is collected for the x and y values then the y values must be converted 

to Y values where:

So that:

nxy ae

ln lny a nx 

lnY y

ln  : a straight line gradient , vertical intercept lnY a nx n a 



“Fonksiyonlar”
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• A function P is called a polynomial if P(x) = anxn + an-1xn-1 + … + a2x2 + a1x + a0

• where n is a nonnegative integer and the numbers a0, a1, a2, …, an are constants called the coefficients 
of the polynomial.

• A polynomial of degree 1 is of the form P(x) = mx + b. So, it is a linear function.

• A polynomial of degree 2 is of the form P(x) = ax2 + bx + c. It is called a quadratic function.

• Its graph is always a parabola obtained by shifting the parabola y = x2. The parabola opens upward if a > 
0 and downward if a < 0.

Polynomials



Polynomials are commonly used to model various quantities that occur in the natural and social sciences.

A polynomial of degree 3 is of the form

It is called a cubic function.

3 2( ) ( 0)P x ax bx cx d a    



A function of the form f(x) = xa, where a is constant, is called a power function. 

a = n, where n is a positive integer

– The graphs of f(x) = xn for n = 1, 2, 3, 4, and 5 are shown.

– These are polynomials with only one term.

– We already know the shape of the graphs of y = x (a line through the origin with slope 1) and y = x2 (a parabola).

POWER FUNCTIONS



A general cubic function y = ax3 +bx2 +cx+d

The extrema are points where the derivative of the function is zero, 

which in this case results in the following quadratic equation: 

(ax3+bx2+cx+d)’ = 3ax2+2bx+c = 0.

Qubic Function



Equation y = ax2 produces a parabola, if a > 0 the parabola is opened upward

(fig.a,b), and if a < 0 the parabola is opened downward (fig.c). The larger the

absolute value of a is, the steeper is the parabola.

Parabolik function



Equation y = ax2+bx+c also produces a parabola. At this point the derivative of the

function to zero (ax2 +bx+c)’ = 2ax+b = 0

Parabolik fonksiyonlar



• The general shape of the graph of f(x) = xn depends on whether n is even or odd. 

• If n is even, then f(x) = xn is an even function, and its graph is similar to the parabola y = x2.

• If n is odd, then f(x) = xn is an odd function, and its graph is similar to that of y = x3.

• However, notice from the figure that, as n increases, the graph of y = xn becomes flatter near 0 and steeper when x ≥ 1. If x is 
small, then x2 is smaller, x3 is even smaller, x4 is smaller still, and so on.

CASE



a = 1/n, where n is a positive integer

– The function is a root function. 

– For n = 2, it is the square root function             , whose domain is       and whose graph 
is the upper half of the parabola x = y2.

– For other even values 
of n, the graph of is similar to that of .

1/( ) n nf x x x 

( )f x x [0, )

CASE

y x

ny x



For n = 3, we have the cube root function  whose domain is    (recall that 
every real number has a cube root) and whose graph is shown. 

– The graph of            for n odd (n > 3) is similar 
to that of        .

3( )f x x

ny x

3y x

CASE





a =  -1

– The graph of the reciprocal function f(x) = x-1  = 1/x is shown. 

– Its graph has the equation y = 1/x, or xy = 1.

– It is a hyperbola with the coordinate axes as its asymptotes.

CASE



• This function arises in physics and chemistry in connection with Boyle’s Law, which states that, when the temperature is 
constant, the volume V of a gas is inversely proportional to the pressure P. V=C/P

• where C is a constant. So, the graph of V as a function of P has the same general shape as the right half of the previous 
figure.

CASE



• A rational function f is a ratio of two polynomials 𝑓 x =
𝑃(𝑥)

𝑄(𝑥)
where P and 

Q are polynomials. The domain consists of all values of x such that
Q(x)≠0. 

• A simple example of a rational function is the function f(x) = 1/x, whose 
domain is x x ≠ 0 . 

• This is the reciprocal function graphed in the figure.

RATIONAL FUNCTIONS



The function is a rational function with domain.
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RATIONAL FUNCTIONS







A function f is called an algebraic function if it can be constructed using algebraic 
operations—such as addition, subtraction, multiplication, division, and taking roots—
starting with polynomials. 

Any rational function is automatically an algebraic function.

Here are two more examples:

2( ) 1f x x 

ALGEBRAIC FUNCTIONS
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An example of an algebraic function occurs in the theory of relativity. 

– The mass of a particle with velocity v is

where m0 is the rest mass of the particle and c = 3.0 x 105 km/s is the speed of light in 
a vacuum.
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In calculus, the convention is that radian measure is always used (except when otherwise 
indicated).

– For example, when we use the function f(x) = sinx, it is understood that sin x means 
the sine of the angle whose radian measure is x.

– Thus, the graphs of the sine and cosine functions are as shown 
in the figure.

TRIGONOMETRIC FUNCTIONS



• Also, the zeros of the sine function occur at the integer multiples of π . That is, sin x = 0 when x = nπ, n an integer.

• An important property of the sine and cosine functions is that they are periodic functions and have a period 2π. This means 
that, for all values of x, sin(x + 2π)= sin(x), cos(x + 2π)= cos(x).

• Notice that, for both the sine and cosine functions, the domain is (−∞,∞) and the range is the closed interval [-1, 1]. Thus, 
for all values of x, we have: -1 ≤ sin(x) ≤ 1, -1 ≤ cos(x) ≤ 1. In terms of absolute values, it is: |sin(x) ≤ 1|, |cos(x) ≤ 1|. 

• The periodic nature of these functions makes them suitable for modeling repetitive phenomena such as tides, vibrating 
springs, and sound waves. 

TRIGONOMETRIC FUNCTIONS
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• The tangent function is related to the sine and cosine functions by the equation tan x =
𝑠𝑖𝑛(x)

cos(x)

• The tangent function is undefined whenever cos x = 0, that is, when x = ±
𝜋

2
, ±

3𝜋

2
, . . .

• Its  range is (−∞,∞) . Notice that the tangent 𝜋 function has period: tan(x+𝜋 ) = tan(x ) for all x.

• The remaining three trigonometric functions—cosecant, secant, and cotangent—are the reciprocals of 
the sine, cosine, and tangent functions.

TRIGONOMETRIC FUNCTIONS



The exponential functions are the functions of the form f(x)=ax , where the base a is a positive constant. 

– The graphs of y = 2x and y = (0.5)x are shown.

– In both cases, the domain is (−∞,∞) and the range is (0,∞).

– We will see that they are useful for modeling many natural phenomena—such as population growth (if a > 
1) and radioactive decay (if a < 1).

– The logarithmic functions 𝑓 x = 𝑙𝑜𝑔𝑎 x, where the base a is a positive constant, are the inverse functions 
of the exponential functions.

EXPONENTIAL FUNCTIONS





Davranışların Matematiksel Modellenmesi



The figure shows the graphs of four logarithmic 
functions with various bases.
– In each case, the domain is (0,∞), the range i (−∞,∞), and the function increases 

slowly when x > 1.

LOGARITHMIC FUNCTIONS



Classify the following functions as one of the types of functions that we have discussed.

• f(x) = 5x is an exponential  function. The x is the exponent

• g(x) = x5 is a power function. The x is the base. We could also consider it to be a polynomial of degree 5.

• u(t) = 1 – t + 5t4 is a polynomial of degree 4.

TRANSCENDENTAL FUNCTIONS
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This is an algebraic function.

Transcendental functions are those that are not algebraic. 

– The set of transcendental functions includes the trigonometric, inverse trigonometric, exponential, and logarithmic 
functions.

– However, it also includes a vast number of other functions that have never been named. 



Uygulama-1

• clear all; close all

• M=41; s=(M-1)/20;

• for i=1:M

• t(i)=-s+(i-1)*0.1;

• end

• for i=1:M

• y1(i)=2*t(i)^2;

• y2(i)=t(i)^2;  

• y3(i)=-t(i)^2;   

• y4(i)=-2*t(i)^2;   

• end

• figure(1); plot(t,y1,'r',t,y2,'b',t,y3,'g',t,y4)

• title('\fontsize{20}\bf y =at^{n}','Color','b')

• xlabel('t','FontSize', 20)

• ylabel('y(t)','FontSize', 20)

• legend('y=2t^{2}','Location','southwest','y=t^{2}','Location','southwest','y=-
t^{2}','Location','southwest','y=-2t^{2}','Location','southwest' )

• grid on
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Usage Notes
• These slides were gathered from the presentations published on the internet. I would like to thank  who prepared 

slides and documents.
• Also, these slides are made publicly available on the web for anyone to use
• If you choose to use them, I ask that you alert me of any mistakes which were made and allow me the option of 

incorporating such changes (with an acknowledgment) in my set of slides.

Sincerely,
Dr. Cahit Karakuş

cahitkarakus@esenyurt.edu.tr
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